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ABSTRACT

Theoretical methods are presented for the analytic and
experimental determination of mechanical impedance and
its associated effects on the dynamic response of linear,
multi-degree of freedom/multi-dimensional systems.
Impedance matrices are formulated which are useful in
describing and predicting the frequency dependent charac-
teristic properties of these systems. The problem of inter-
connecting subsystems is formulated in terms of composite
impedance matrices and interconnection equations, from
which critical frequencies (resonances and anti-resonances)
and dynamic response of the composite system may be ob-
tained. Analytical and experimental procedures for the
evaluation of these matrices are also discussed. To demon-
strate the application of some of the procedures, an ex-
ample problem is solved. Moreover, the results of this
study are sufficiently general for extending the approach to
many types of distributed system configurations subject to
varied excitation phenomena.
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MECHANICAL IMPEDANCE ANALYSIS
FOR LUMPED PARAMETER MULTI-DEGREE
OF FREEDOM/MULTI-DIMENSIONAL SYSTEMS

by
Frank J, On
Goddavrd Space Flight Center

1. INTRODUCTION

The analysis of mechanical systems under dynamic loadings requires that the dynamic char-
acteristics of the systems be known in addition to the characteristics of the excitations. In com-
plex linear systems, it is useful to specify these system dynamic characteristics in terms of
mechanical impedance (References 1 and 2).

In this study a mechanical impedance* analysis of complex systems is developed. This anal-
ysis ultimately may serve as an analytical tool in the computation of impedances and as a guideline
in the laboratory measurement of impedances.

The basic philosophy adopted in this analysis is based on the idea of breaking up a complex
system into component parts with simple dynamic properties of mass, stiffness, and damping that
can be formulated readily in matrix notation. Appropriate component matrices are then considered
as building blocks, that when fitted together according to a set of predetermined rules, provide the
mechanical impedance characteristic of the entire system. Such a philosophy has been practiced
in the well known method of influence coefficients (and related methods) of structural analysis. The
matrix formulation of mechanical impedance may be considered as a natural extension of these
methods, and like them it is well suited for processing by digital computers.

The results of these extensions to the determination of mechanical impedance require the re-
interpretation of matrix parameters in terminologies that can be associated with the basic concepts
of impedance. This is accomplished by manipulating equations of motions to appropriate forms
physically corresponding to impedance quantities such as point and transfer impedances, free
velocity and blocked force, etc.

*Although mechanical impedance and mobility are respectively defined as the complex ratio of sinusoidal force to sinusoidal velocity
and of sinusoidal velocity to sinusoidal force, four other ratios between sinusoidal force and sinusoidal displacement and acceleration
are equally useful. Thus the developments here may refer to all six ratios.



In order to present a method of analysis that is not confined to any particular type of struc-
tural system, a general method based on multi-degree of freedom, multi-dimensional systems* is
adopted. The necessity of treating real complex structural systems as multi-dimensional systems
has been recognized among environmental engineers for many years, but impedance concepts for
multi-dimensional systems have been advocated only recently. This is largely due to the recogni-
tion that as aerospace structural systems become larger and more complex, one-dimensional im-
pedance concepts are inadequate (Reference 3). Also, as the demands for larger environmental
test facilities to accommodate these systems become more impractical, the use of subassembly
and component testing philosophies becomes imperative. It is hoped that an appreciation of the
generalized mechanical impedance approach will be gained from the developments herein. In par-
ticular, two aspects of the approach will be emphasized: (a) it provides both a means of analyzing
complex structural systems by partitioninz into successive smaller systems, and a natural means
for matching boundary conditions; and (b) it provides a useful, sound basis for performing and cor-
relating subassembly and component environmental tests, obviating the requirement for huge test

facilities.

In the following sections, the theoretical relations and methods of evaluating the pertinent
parameters required for the successful application of this concept are presented.

2. EQUATIONS OF MOTION

It is well known that complex linear time invariant mechanical systems can be analyzed in
terms of their lumped parameter equivalents. The matrix equation of motion for such a grid net-

work of lumped elements is given by:

[mep] {5 (3} * [e0p] {3 (0} * [hug] {3500} = {Ea (0} "

NN N1 NN N1 NN

where x denotes generalized coordinates and N denotes the number of degrees of freedom. The
description of a particular system is contained in the coefficient matrices [m,;], [c,5] and [k,.] ';
the type of excitation is described by the column matrix {f_}.

In summation form, Equation 1 may be written as:

N

d .
Z(maﬁ dt +°aﬁ+kaﬂJ.dt>xﬁ(t) = (0, a = 1,2, -, N. (2)

BA=1

*Multi (or single) degree of freedom systems whose motions are confined along a single dimensional space are considered one-
dimensional. Systems which are not one-dimensional are consequently both multi-dimensional and multi-degree of freedom.

Tco_ﬂ is the damping force at x, due to a unit velocity at xg; ka,B is the elastic force at x, due to a unit displacement at Xg;mgg
contains scalar information regarding masses as well as first and second moments of the masses. In a simple system consisting of
mass particles connected by springs and dash-pots, having no coupling, m, , would be either the mass or the principal moment of
inertia of the ath particle. All m, g transfer masses, first products and crossproducts of inertia would then be zero.
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3. MECHANICAL IMPEDANCE APPROACH

Mechanical impedance is formally defined for linear systems over the domain of frequency as
the ratio of the Fourier transforms of the force excitation and the velocity response. By Fourier
transformation, Equation 2 may be written as the set

N

Z(iwmaﬁi-caﬁi-kaﬁ/iw)Vﬁ(w) = F, (o), a = 1,2, ---,N, (3)
B=1
where
w = 2rf = circular frequency,
Vg (w) = Fourier transform of velocity, x5 (1),
F, (w) = Fourier transform of force excitation, f_(t) .
Letting

Zag (@) T dwmgg +cyg t kaﬁ/iw (4)

represent the frequency-~dependent characteristic property of the system, Equation 3 may be
written as

2

gV = Fao (5)

or, in the shorthand matrix form,

(2as] {Vs} = {F.} - (6)

In these equations, Z_ 5 are complex numbers giving the ratio of the transform vibratory force
at coordinate « to the transform vibratory velocity at coordinate 8. They are functions of frequency
and may be called impedance parameters of the system. For o = 3, the Z,; are called point im-
pedance parameters, and for « 7 3, they are called transfer impedance parameters. Alternatively,
Z,; may be considered as the ratio of vibratory force input at the o coordinate to vibratory velocity
response at the 8 coordinate when all other coordinates are infinitely restrained (i.e., zero veloci-
ties). Accordingly, the matrix [Zaﬁ] may be considered as the mechanical impedance matrix of the
system, while the column matrix {vﬁ} represents the transform of velocities corresponding to the

transform of input forces {F, }.



Heretofore, the developments have been analogous to those of the methods of dynamic influence
and stiffness coefficients. Equation 6, however, expressed in terms of all the coordinates which
have been defined, may not be in the most useful form. In many practical situations, some of these
coordinates are not of interest either because impedance information at these coordinates is not
desired, or these coordinates are not accessible for physical measurement. Frequently, the co-
ordinates of interest are those at which subsequent interconnection with another system is antici-
pated. Consequently, it is desirable or necessary to express Equation 6 in terms of matrix quanti-
ties referred to only the coordinates of interest, hereafter called "exterior coordinates." The
coordinates not of interest are called "interior coordinates."

If Equation 6 is rearranged, grouped and partitioned according to "interior" and "exterior"
applied forces such that n coordinates are exterior and the remaining p coordinates are interior,

Equation 6 may be written as

[Zse] [Zed]| | {Ve} {Fe}

nn np - ) (7)
(Ze] [Za]| | {V:} {F:}

The subscripted [Z], {v} and {F} are the submatrices corresponding to the partition; the sub-
scripts E and I denote respectively exterior and interior. In accordance with the reciprocity

theorem for linear systems,

(Ze;] = [z]™ . (8)

where T denotes transpose.

The expanded form of Equation 7 provides a set of equations from which we can develop the
matrices entirely in terms of quantities referred to exterior coordinates. Obtaining the submatrix
{v,} from the second equation of the partitioned form and substituting in the first equation yields

[f::]{:'f} = {FE;IFE} (9)

where
[f:] = [znliE] - [Zn}il] [Zpiljl o [ZpInE] ’ (10)
{iEf} = [anil} [ZPIPI]_I{I;I}’ (11)

and [Z;;]7? is the inverse matrix of [Z;,], which is assumed nonsingular.
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Equation 9 may be termed the "exterior equation' of the system since all quantities now refer
to exterior coordinates. The matrix [ZE] in this equation then represents the internal impedance
as seen from the exterior points, and differs conceptually from [Zaﬁ] in the original matrix equa-
tion only in the coordinates to which it is referred. Here the matrix {Fb} is defined as the '"blocked
force matrix'" of the system, and it represents the interior excitations as transmitted to the ex-
terior coordinates for exterior coordinates fixed so that no motion occurs. In Equation 9, the neg-
ative sign with F,” denotes the change of reactions due to interior forces into equivalent externally
applied forces.

If a system contains no internal source of energy, the matrix of interior forces, {FI} , and
consequently the matrix of blocked forces, {FE"}, becomes identically zero. Such a system is
termed a ''"passive’ system as opposed to an ""active' system when {FE"} is nonzero. According to
the foregoing developments, the activeness or passiveness of any system may be arbitrary in that
it depends primarily on the initial definition of interior and exterior coordinates.

It follows from Equation 9 that the matrix of exterior velocities {V;} can be obtained explicitly
by premultiplying through by the inverse matrix of [ZE] which is assumed nonsingular,

{VE} = [Z] 7 {Fe -FP} - (12)

The inverse matrix [2}"! is termed the ""matrix of mobility" (Y]. Frequently the use of (Y] is more
desirable than [Z] (see Section 7.3). At this point the choice is trivial. When the matrix {F,} of
applied forces at exterior coordinates is zero, the velocity matrix of Equation 12 is significant
enough to warrant the special term '"'free velocity'" matrix, expressed by

{Veod = - [z]"{Fe} - (13)

In terms of the free velocity matrix, Equation 12 becomes

{Ve-Veo} = [ze]'{Fe} - (137)

An alternative form of Equation 9 may be obtained in terms of the free velocity matrix and the
mobility matrix (inverse matrix of impedance) of the system, as follows. Premultiplying Equation 6

by the inverse matrix [z ]'1, which will be denoted by [Yaﬁ] yields

ap

{Va} = [Yaﬁ] {Fﬁ} ’ (14)
where (Y] is the mobility matrix.

Partitioning in terms of exterior and interior coordinates, Equation 14 can be written as

{ve} (Yee] [Yer) {F:}

e . 1)
{VI} [YIE] [YII] {FI}

pn PP



Expanding Equation 15 provides a set of equations from which we can develop the matrices entirely
in terms of quantities referred to exterior coordinates. Obtaining the submatrix {F;} from the
second equation of the partitioned form and substituting in the first equation yields:

{ve-Veo} = [¥e]{F:}. (16)

where
[YE] = [YEE] B [YEI] [Yu]~1 [YIE] ’ k)
{VEIO} = (Y] [Yn:]™ {Vxl} ' (18)

The determinant of [z.] in Equation 9, or of [¥;] in Equation 16 (when damping is neglected)
may be recognized as the frequency determinant of the system observed from the exterior coor-
dinates. Upon expansion it yields a polynomial in «?, the roots «_ of which are known as the natural
frequencies. Cooresponding to each value of »_, an amplitude matrix may be computed for each

natural mode.

4. MULTI-DIMENSIONAL IMPEDANCE

The multi-dimensional or one-dimensional aspect of a system is characterized by the nature of
the matrices of Equation 7. The necessary and sufficient condition for one-dimensional systems is
uniformity in coordinate types (rectilinear or rotational) which define excitation and response of the
system confined to a single dimensional space. For example, a single terminal having three recti-
lineal and/or rotational types of coordinates is not one-dimensional within the scope of this definition.

The general nature of multi-dimensional systems invariably requires consideration of both
rectilinear and rotational types of impedance analysis and measurement. Rearranging and group-
ing with respect to rectilinear and rotational impedance, as well as to interior and exterior coor-
dinates, and partitioning accordingly, Equation 6 may be expressed as

(2] [2] [2%) [=%]] ((0})  [(#))
nyng nn, n,py np, nll nll
(23] (&) [z7] [zF]] |{v {Fs
nany nany nyp, nypy n,l nol
e (19)
(28] (z¥] (2] [2¥]] [{v/} {F?}
Py Pyny PPy PyP2 Pyl Pyl
28] (&) (28] [z&]] [{vS} {rf}
| _P2a™1  Pa™2 PP PPy L Pz‘J \_ P!



where the superscripts & and ¢ respectively represent rectilinear and rotational. It is apparent in
Equation 19 that there are four possible types of impedance:

[2>°]

1l

point or transfer impedances defined by ratios of rectilinear forces to rectilinear
velocities,

[2¢]
[29%]
[z%°]

transfer impedances defined by ratios of rectilinear forces to rotational velocities,

transfer impedances defined by ratios of couples to rectilinear velocities,

I

point or transfer impedances defined by ratios of couples to rotational velocities.

]

In accordance with the reciprocity theorem for linear systems, these impedances and their matrices
possess the following convenient transpose properties:

(zx] = [zE]" (z¥] = [2%)
(7] = [z&F]". (z5) = [2&]
[ZEsle] = [ZIQES]T , [ZESIS] = [ZISEQJT . (20)

5. INTERCONNECTION OF SYSTEMS

In Section 3 it was shown how the performance equation of a system can be expressed in
terms of coordinates of anticipated interconnections, heretofore defined as exterior coordi-
nates. Let the set of these exterior coordinates corresponding to {VE} be common to two
systems which are otherwise separated. Block diagrams representing the two systems are
shown in Figure la. The systems will be connected as shown by Figure 1b, and their com-
bined behavior will be examined in terms of interfacial critical (resonant and anti-resonant)
frequencies and response.

The individual performance of the systems

I vI F]I \/ﬂ
rior to connection can be described with ref- el 171 po |
P ) ) SYSTEM I ;:,I,v_i’ £l Vn SYSTEM IO
erence to Equation 9 by the set of exterior [zl ] ---_O'I_'[> ;1’_11—’0'__— [ZIB]
. F, v a
equations: i I A WA »o—o|
a. Systems before interconnection.
I
(2] {v} = {p-p'}, (1) FoVip
nn nl nl E vV
T SYSTEM T f-———L = SYSTEM IU
[ZII {VII} {FII - } (22) iV —»

b. Composite system.

where the superscripts I and II designate a Figure 1—Block diagrams of (a) subsystems

specific system. The subscript E is dropped and (b) composite system.



with the understandine that all quantities now refer to exterior coordinates. The
impedance matrices [ZL] and [ZII] are roughly the counterparts of the "driving
point" impedances, looking back from the interface commonly associated with one-

dimensionzl interconnected systems.

Assuming the identification of coordinates of system I to be physically and mathematically
compatible with those of system II, then m = n in Equations 21 and 22, When the systems are com-
bined to form a composite system, Equations 21 and 22 must satisfy a force equilibrium condition

{R} = {FI +FIL —(FbI+Fb”)} , (23)

and a velocity compatibility condition*

W= v} = () (20

nl nl

where the nonsuperscripted quantities refer to composite quantities at the interface.

Satisfying these conditions in Equations 21 and 22, and subsequently summing up these equa-

tions yields

H v = {r,
nn nl nl (25)
where
= I IT
[i] (z n:Z ] . (26)

Equation 25 is termed the "composite systems equation," which is the equation of equilibrium in
terms of the interconnection velocity {v} for the complete system and the matrix (H], called the

"interconnection matrix."

Thus, in the calculation of the interconnection velocity, the complete system has been regarded
as an assembly of the subsystems subjected to the equivalent loading {R} of Equation 23. The sum-
mation {F"I + Fb”} implies addition of the corresponding interconnection reactions for intercon-
nections blocked (i.e., blocked forces), while { Fl +FIL } is the loading matrix for externally applied
forces on these interconnections.

In the case of free vibrations,
e} = {rm} = (&'} = {P"} = o, @7)

*The nature of the mechanical connections at the interconnection (i.e., boundary conditions) are implicitly defined by the force equili-

brium and velocity compatibility equations.



and consequently

R} = {0}, (28)

and Equation 25 reduces to

Ml {v} = {o}, (29)

a set of linear homogeneous equations in V. The roots of the frequency determinant

AHY = 0 (30)

correspond to the natural frequencies of the composite system observed at the interconnection.

6. ANALYTICAL APPROACH

In order to evaluate the matrices of the foregoing sections, analytical and experimental pro-
cedures are recommended in the sections that follow. The application of these procedures in con-
junction with automatic data processing techniques will greatly enhance the computational schemes
required by theory.

The basic procedure for analytical determination of the desired matrices discussed in the
foregoing sections may be summarized as follows:

(i) Choose a set of appropriate grid points for the system and identify the required general-
ized coordinates. In terms of these coordinates, obtain the matrix equation of motions

from which the coefficient matrices [m ], [k.5] and [c 5] are determined.

o8]
(ii) Determine the matrix of applied forces (or moments) {F}.

(iii) By elementary matrix operations, determine the submatrices (Zg], (Zg], [Ziz)s [Zm)>
(275 {ve}s {Vvi}s {Fg} and {F,} from [z ,], {F }and {v,}.
(iv) Determine [z, ] and {F,>} from Equations 10 and 11.
(v) Determine the response {V; } from Equation 12.

(vi) Seiting the damping coefficients to zero in the frequency determinant, determine the
critical (resonant and anti-resonant) frequencies and the corresponding natural modes.

If the effect of connecting a second system to the first system is desired, the following addi-
tional steps are required:

(vii) Repeat steps (i)—(vi) for the second system.

(viii) Determine the interconnection matrix (H] from Equation 26.



(ix) Determine the loading matrix {R} from Equation 23.
(x) Determine the response at the interconnection from Equation 25.

(xi) Neglecting damping, determine critical (resonant and anti-resonant) frequencies of com-
posite system from Equation 30 and compute corresponding natural modes.

7. MEASUREMENT APPROACH

Experimental measurement of the impedance matrix [z, ] requires the acquisition of a com-
bination of experimental data which will supply sufficient information for evaluating the matrix
elements of [2;]. The following schemes for experimentally determining matrix (z;] are based
on the fact that if a performance equation (L quation 9 or 16) is to truly describe the dynamic be-
havior of the system, matrix [Z;] must be compatible with the set of velocities {V,} and forces {F}
measured on the system at the specified coordinates.

1.1. Determination of Impedance Parameters

7.1.1 Active Systems

In the experimental determination of impedance parameters, the measurement of free.velocity
V, is more readily accomplished than that of blocked force F°. This is due to the fact that ideal
physical restraint conditions required for block force measurement are seldom realizable. By
substituting Equation 13 into Equation 12, the performance equation for active systems may be

written in modified form as
(z1{v-v,} = ¥, (31)

where the subscript E has been dropped. Hereafter, the absence of E implies that all coordinates
are exterior. For a system of n coordinates, the number of impedance parameters will be n?2,
Theoretically, only n(n + 1)/2 number will have different values, since Z,5 = Zg,, for (a ZB . Itis
highly desirable, however, to evaluate all n? parameters since this will provide a means of valida-
ting the assumption of linearity of the system by use of the symmetric condition Z, = Zg, (o 7 B).
Since the column matrix of free velocities must also be determined, a total of n +1 tests are re-
quired at each frequency to evaluate all the impedance matrix elements and the elements of free

velocity of Equation 31.

Test 1: With the system suspended on its natural restraints, or, in the case of a free system,
on a low frequency suspension such that all exterior coordinates are unattached (zero load im-
pedance), operate the system and determine the phasor* of all resulting free velocities. Denote
these free velocities by {V» ()} where the superscript (1) represents test number.

*The term “phasor,” as used here, implies magnitude and phase of a steady state sinusoidal quantity where phase measurement is made
with respect to an arbitrary fixed reference. If a quantity is not steady state sinusoidal, Fourier transform of the quantity is required

for determining the phasors.
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Testn +1: With the system suspended as in Test 1, operate the system and apply an external
force at one of the exterior coordinates (e.g., the o coordinate) and determine the phasor of all
resulting velocities at all exterior coordinates and the phasor of the applied force. Denote these
velocity phasors and this applied force phasor respectively by {V(® (»)} and {F(® (»)}, where all
elements of {F(2} except the ot element are zeros. Repeating this test n times, each time ap-
plying a force at successively different coordinates and determining the phasor of all resulting
velocities and the applied force, provides a set of experimental data from which the following re-
sulting matrix equations may be solved simultaneously for the elements of [Z] at any specified
frequency, say «,:

[Z (o )] {v(k) () — VgV (“’o)} - {F(k) (o )} J (32)
where the test number k = 2,3, - .-, n+1.

7.1.2 Passive Systems

For passive systems, the matrix of free velocities {VO} is identically zero and Equation 31
reduces to

(z] {v} = {F} - (33)

Accordingly, tests of the type outlined under Test (n + 1) for active systems (except now there are
no free velocities) provide a set of experimental data from which the resulting matrix equations
(similar to Equation 32) which follow may be solved simultaneously for the elements of (Z] of the
passive system at any specified frequency «,:

[2(00)] {v ()} = {F® ()} . (34)

where k = 1, 2, - - - , n. Since passive and active systems are conceptually related by the absence
or presence of an appropriately determined free velocity or blocked force matrix, these determ-
inations based on Equation 34, if supplemented by an independent determination of free velocities,
may also be employed for active systems.

7.2. Determination of Mobility Parameters

The solutions of Equation 32 or 34 when n > 3 will invariably require the use of digital com-
puters. A more practical procedure which considers the computation of elements of the inverse of
the impedance matrix (mobility matrix) can be made available as follows: Equation 32 in its inverse

form,
[2(w0)] 7 {F® (@)} .
[¥ (o) ] {F® (w0)} (35)

11
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where [Y] is the mobility matrix, and expanded, can be written as follows (assuming force excita-
tion at a single coordinate to be taken in numerical order with the subscript of the coordinates):

Vi (w,) - vy (@) = Yy (@) F{® (“’o) +0+0+ -+ 0
\AR (wo)"vo(lz)(wo) - Yzl(“’)F(2)(“))+O+0+ +0
V(z)(“’)_vo(,?(‘“o) - Yn1<“’)F(2)(“))+0+0+ +0
v, (o) - v (w) = 0+0+ Y (wo) O ()
VD () < VD (o) = 040k o 8 Yy (o) B (ag)
v, (“’o) = VR (“’o) S 0H0E e T Y, (“’0) F O (“’o) : (36)

From Equations 36 the elements of the mobility matrix are readily computed as

Va(ﬁ“) (“’o) B Vo(,t) (“’o)
Yap (wo) ) F,B(ﬁ“) (wo) ’ ®7)

wherea, £ =1,2,3,+--,n.

For the case of passive systems wherein no free velocities are present, Equation 36 and con-
sequently Equation 37 reduces to

Va(ﬁ) (“)0 )

Yo (@) = EP (o) | (38)

where the superscripts (8 + 1) have been modified to be compatible with the test number shown in
Equation 34,

The complete determination of the impedance or mobility matrix requires performing the above
procedures over all frequencies of interest. The impedance matrix (Z] may be obtained by per-

forming the inverse of the mobility matrix, i.e., [Z] = [Y]"!,

1.3. Significance of Mebility and Impedance Parameters

It is evident in the foregoing analytical procedures that the significance of mobility parameters
versus impedance parameters is primarily one of utility. Since they are mathematically related

12



by the matrix inverse relation

(z} = (17,

(39)

the choice may depend on whether force or velocity response is considered as the unknown, or may

depend on which is the more desirable parameter for describing one's interest. In problems
dealing with creating motions, the use of mobility may be preferred; in problems dealing with im-

peding motions, the use of impedance may be preferred.

A greater significance which is related to

K
1 2
the measurement of these parameters is dem- VA VA
. . . M M
onstrated by the invariant and variant property M1 2 3
of the elements of the mobility and impedance (of C,
matrix, respectively (Reference 4). Consider l Frox | Farx2 l Faxs
a system of threedegrees of freedom as shown a. Block representation of a one ~dimensional / three degrees
in Figure 2a. The performance equation of of freedom system.
. . . PR K K
this system in terms of the mobility matrix is | A ¥
My M, M3y
vy Y Yoo Yis F, (o C,
v, = | Ya Yy, Yyu [ Fap (40) l-’ Fi,x
b. Block representation when only F; and x, are considered.
V3 Y31 Y32 Y33 F3 ! !
Ky K2
'AVA
where {V} is the column vector of resultant M, M, Mg
velocities corresponding to the column vector
. C C
of applied forces {F}). The elements of the l ! | 2
mobility matrix [Y] may be evaluated by the Fioxg Fasx,

c. Block representation when Fy , F, , x; ,and x;
are considered.

method of Section 7.2. When only F, is applied

and x, is considered the exterior coordinate
(Figure 2b), the performance equation is simply

Figure 2—Block representation of a system with

varying number of coordinates under consideration.

from which

The performance equation when only F, and F, are applied, and x,

terior coordinates, (Figure 2c) is

2

and x, are considered the ex-
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from which the elements of [Y], evaluated by method of Section 7.2, are:

v, v, v,
Yu:—F_l' Y, = F,° Yzlz—ﬁ’ Yo © F,

It is noted that Y,, remains the same as when only x, is considered. Considering all three co-

ordinates x,, x, and x, with applied forces F, F, and F,, the performance equation becomes

vy 11 Yy, Y| [Fu
v, = | Yn Yy, Y3 |§F2 ’
\& 31 Y5 Y3 | (Fs

where the elements Y_, (¢, 8 = 1, 2) remain the same as when only x, and x, are considered and
the additional elements are evaluated as

v v \%
’ Ys ° F,° Yo ° F Yszz—l";' Y3 5 F,°

N
w
w

Accordingly, the elements of the mobility matrix for the system are seen to be invariant, in this
manner, with respect to the number of coordinates considered. Now consider the computation of
the elements of the impedance matrix using Equation 39. A general element may be computed

from

(_1)a+ﬁAaﬁ
Zp = AT (41)

where the numerator and denominator are respectively the adjoint and determinant of the mobility
matrix, As the numerator and denominator in Equation 41 are dependent on the order of the matrix
[v] and are in general not equal, the elements of the impedance matrix consequently are variant
with respect to the number of coordinates considered. This implies that as additional coordinates
are considered, each previous matrix element must be recomputed.

The invariant property of the mobility matrix makes it desirable and natural to measure and
use mobility parameters, and to consider impedance parameters as derived quantities with certain
utilities. Furthermore the use of the term "'driving point," frequently associated with one-
dimensional systems, possesses true counterparts in multi-dimensional systems when used only
with elements of the mobility matrix.

For active systems, the choice of free velocity or blocked force measurements requires some
consideration. Mathematically, the free velocity matrix is simply related to the blocked force
matrix through Equation 13. Computationally, free velocities can be obtained from blocked forces
if the mobility matrix is known. Experimentally however, the measurement of blocked forces in
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general is exceedingly difficult because of the physical constraint required by theory. The meas-
urement of free velocities is more easily accomplished and consequently the more natural quan-
tities to measure.

8. DETERMINATION OF IMPEDANCE IN PRESENCE
OF PARTIAL EXTERNAL RESTRAINTS

In the laboratory, the impedance matrix [Z,] of a system sometimes cannot be determined
readily for ideal free conditions (when the system is naturally free) or for natural restraints*
(when the system is naturally restrained). Some of the free coordinates may be restrained to some
degree, or some of the natural restraints may be altered. In some cases the required measurement
instrumentation may impose significant restraints. A formal method to determine the impedance
[z;] of the free system from an impedance [Z;] determined with the system unnaturally restrained
in a known fashion is developed in the following.

Consider an active system having a class of u exterior coordinates which are free of restraints
and another class of v exterior coordinates which are restrained in a known fashion. When the set
of free coordinates is denoted by subscript f and the set of restrained coordinates by r, the system
when entirely free of restraints (Figure 3a)

may be expressed as
Active f _‘)_—’Ff,Vf

System Fi—o0 —»F,,V,

~Fb
{v:} (Yee] [¥e]| [ {Fe-F}
1
ul = o w N , a. Block representation of "Free" (naturally restrained) active system.

N 42
{vr} [er] [Yrr] {Fr —Frb} ( )
vl vu vv vl
Active fj—o —»F Active
) . . A System Restraint System
which is obtained by substituting 14 rf—o —F? —Fbo——— (2.1
r e e
fz]71 = [Y] = .
[ Active fF=—»F Ve Active
cia s . System _2;; Restraint System
in Equation 12, and partitioning in terms of r < e [z.]
T e
submatrices corresponding to free and re-
strained coordinates. When the restraints are b Block representation of restrained system.
expressed in terms of a known impedance
matrix [z, ] as shown in Figure 3b, the applica- Active f f—o —»F,,V,
tion of the composite equation (Equation 25) at System rl—o—F =F +F, -F* -2V,
the restrained coordinates yields v,
c. Equivalent block representation of Figure 3b.
(z,, +z, {v.} = ®, (43) Figure 3—Block representation of a system under
v vl vi (o) natural restraints, and (b, c) unnatural restraints.

*Hereafter, no distinction will be made between free and naturally restrained systems.
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where
R} = {F/+F/-FP-Fp} - (44)
and {V_}are the interconnection velocities. As shown in Figure 3b, {F,' +F '} are the externally

applied forces at the restraints.

The experimental evaluation of [Y] of the restrained system which will be denoted by [Y] may
be accomplished in a manner similar to that of Section 7.2 by applying components of {Ff} and
{Fr' + Fe’} one component at a time, measuring the resulting velocity at all coordinates, and finally

solving for the elements of [Y] in

{Vf} [?ff} [?fr] {Ff —Ffb}

ISR (45)
vl vu vv vl

The objective is to determine the unknown [Y] of the "free'" system from the "measured' [Y] of
the restrained system and the known restraint impedance [Z,]. This may be accomplished by con-
sidering the effect of the restraint system as reaction forces on the free system as shown in Fig-
ure 3c when {F '} and {F, '} are respectively the externally applied forces on the free and the re-
straint system prior to connection, and {F?} and [2,]{V,} are the reaction forces due to the
restraint system. Accordingly, the net forces acting at the r coordinates of the free system of

Figure 3c are
{r} = {roer/} - {F2} - [2.]{V.} - (46)
Using Equation 44,

{F.} = {R+F}?} - [2,]{V,} " (47)

or
® = {F-Fr}+[2,]{V,} - (48)
The substitution of Equation 48 in Equation 45 yields

{Vf} [?ff] [?f,] {Ff_Ffb}

G ) () R 2T (49)
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The determination of [Y] from [¥] may be accomplished by suitably comparing Equation 49
with Equation 42. This is successfully performed by first noting that, as the result of the equiva-
lence of Figures 3b and 3c,

{V} = (v}~

and then operating on Equation 49 to yield the form of Equation 42. This operation yields the
desired relation:

[¥ee) Y] mo (%] [ - (3] e [

md ]| fo ) ) - @7 |7 ] o0

vu vv vu vv vv vu vv

Frequently it is desirable to determine the effects on the system's mobility matrix as a result
of some known partial restraints. This is accomplished by solving (Y] in terms of [Y] in a manner
similar to the above. Accordingly the result is:

7w o ) (w07 ) 5

a form of the Interconnection Matrix previously defined by Equation 26. The matrix of impedance
[Z) or {Z] may be obtained by application of the matrix inverse relationship between the imped-
ance and mobility matrix, i.e.

1,

— —
e

- -

- -
— g
— o~

<o

- -

- -

(I—
1

or

(11 -

lrﬁ Laamn |
<=
) -
PP
—
I
R
—
i
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9. DETERMINATION OF FREE VELOCITY
IN PRESENCE OF EXTERNAL RESTRAINTS

Frequently the free velocity matrix {Vg,} of an active system cannot be determined readily
under ideal free conditions. It is therefore desirable to develop a formal relationship to determine
the free velocity matrix of the system from the velocity matrix determined with the system re-
strained in a known fashion.

As in the previous section, the desired relationship may be obtained by considering some of
the exterior coordinates f to be free and the remaining coordinates r to be restrained in a known
fashion (Figure 3). Thus, when the system is free, Equation 16 describing the free velocity of the
active system may be written as

{Vf} - {VO,f} [Yff] [Yfr] {Ff}

- o 7 Y] [ HE (52)

which is obtained by partitioning in terms of submatrices corresponding to free and restrained co-
ordinates. When the system is restrained by impedance [Z_] as shown in Figure 3b, the effect of
the restraint system on the free system may be considered in terms of reaction forces as shown
in Figure 3c. Thus, the net forces acting on the free system at the restrained coordinates are
given by Equation 46. Accordingly, replacing {F } in Equation 52 by Equation 46, and denoting the
measurement of velocities {V,} and {V_} under the restrained conditions as {V, } and {V, } respec-

tively, yields

{Vf} - {Vo,f} [Yff] [Yfr] {Ff}

_ = , _ . 53
- e ] B W om) - 7V, - (e )
For free velocity measurements at the free and restrained coordinates,
{Fe} = {F/} = {r)} = 0. (54)
Substituting the condition of Equation 54 in Equation 53 and simplifying yields
{Vo.c} (Tee] [¥e] [X] {v:} [Ye.] {F5}
ul uu uv ul uv vl
= - * ' (55)
{vo..} o3 [r.] +[v..] [x.]| {V.} [v..] {r}
vl vu vv vl vv vl

which is the desired relation of free velocities in terms of velocities measured under the restraint
condition. The procedure consists of first determining the mobility of the free system [Y] by the
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method of Section 8 and the blocked forces of the active restraint system.* Next, measure the
velocities of the active system at the free and restrained coordinates {Vf} and {Vr} respectively

and apply Equation 55 to obtain the true free velocities {Vo,f} and {VO, .} of the active system using
the known mobility (Y]. It may be seen that if all coordinates are free ([Ye] - oo),

{Vf}%{vo,f} ’

and

{vr}—) {VO,r} !

as would be expected.

10. EXAMPLES OF APPLICATION

10.1. Analytical Approach

Consider the two dimensional system of Figure 4 in which two bodies M, and M, are supported

by elastic and damping elements located at their corners, as illustrated. The system is symmetri-

calwith respect to the axis passing through the
center of gravity of thebodies. Vibration of the
system results from an oscillating force act-
ing upon M,. The force is applied at a point on
the plane of symmetry, at a distance ¢ above
the center of gravily of M, and has a horizon-
tal component f  cos wt, and a vertical component

fy sinwt .

The degrees-of-freedom of the center of
gravity are as shown in the upper right corner
of each body, and for small distortions about the
system's stable equilibrium, these are taken as
generalized displacements x, (8 = 1,2,---,6).

In this example the coordinates x,, x_, and x,

5?2
will be referred to as "exterior."
10.1.1 Enevgy Expressions

The kinetic, potential and dissipation
energy of the system are given, respectively,

Mz, I2 [::)
o]
el
0 x

K3,CafKy
<+
Ca,
fy T £x2
.
H ‘ e

el

A v J.
| —>

1777777777771 7177
fe——oc—e——a—p

Figure 4—Lumped parameter equivalent of a
simplified active two-dimensional system.

*Note that {F P} can be obtained from free velocity measurements usin Equation 13.
e ty 4
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by:

- s .2 PR .y

2T M, (x2+x2) + I, %; M, (x2+x2) + I, %2,
= 2 2 2 2 2 2

2P 2K, x + 2K, b*x* + 2K, x,* + 2K, a® x

+ 2K, (xl—x4)2 + 2K, (Cx3 —dxe)z
+ 2K, (xz_xs)2 * 2K, (exs_ex6)2 ’

2D = 2C, x? + 2C; b?x}? + 2C,%,2 + 2C, a% X}

+ 2C, (5‘2_5‘5)2 + 2C, (e’:‘s _e’.‘e)z ) (56)

10.1.2 Equations of Motion

Applying Lagrange's equation for nonconservative systems yields the equations of motion:
M, %, +2(C+C) %, - 2C; %, + 2(K +K )%, - Kyx, = f,
M, %, +2(C,+C, )%, - 2C, k¢ + 2(K,+K,)x, - K, x, = f,,

I x, + 2(C1b2+C2 a2+C3<:2+C4 62)5(3 ~ 2(C3 cd+C, e2) 5(6

+ 2(K1b2+K2 .':|2+K3c2+K4 ez)x3 - 2(K3 cd+K4e2) xe = fy,
M, %, = 2C3%; + 20y x4 - Kyx, + Kyx, = £,
M, %, - 2C, %, + 2C, %, - K, x, + K, x, = f,

I, %, - 2(Cyed +C, e2) %, + 2(C, d?+C,'e?) x4
- 2(K,cd +K, e?)x, + 2(K, d? +K,e?)xs = f, > (57)
where f_(a =1, 2, - - -, 6) are generalized forces to be determined later.
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10.1.3 Coefficient Matrices

From the equations of motion, the coefficient matrices are obtained as:

[mag):

11

33

44

66

maﬁ

11

22

33

44

55

66

14

25

36

my = My,
I, ,

mgs = My,
I

|

0 ; o 7 B(a,B8=1,2, -

2(K, +K;)

2(k, +X,)

2(K, b2 +K, a? +K, c? +k, e?)

XK, |
2K

3

2(K, d? +K, e?) |

k,, = - 2K, ,
kg, = - X, ,
kg = ~ 2(K; cd+K, e?)

All others are zero.

©.6) . (58)

]

(59)
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From Equation 4,
(2]
11
22
33
44
55
66
14
25

36

22

iwM

iwM

iwI,

iwoM

ioM

1w 1

41

52

63

{eas]:

i1 C 2(c1 +C3) ’

Cap ~ 2(c, +C4) ,

c,; = 2(C b2+C,a%+C c?+C,e?)
Cae = 2G5,

css T 2,

Ces Z(Cs d2+C4e2) ’

Ci4 7 C41 T 7 2C;

e T S5 T T %Xy

Ci6 ~ Cg3 T 2(C3 Cd+C4e2) .

All others are zero.

2(C, +C,) + 2(K, +K,)/iw

2(c, +¢,) + 2(K, +K,)/io .

(60)

(z:¥)

(z)

2(C,b% +C, a2 +Cyc? +C, e?) + 2(K, b? +K, a? tK c? +Ky e?)/iw , (2,F)

2, + XK, /iw

2, + K, /io

2(c, a2 +c, e?) + 2(K, d? +K, e?)/iw
- 2(C, Ky /iw) |

- 2(c, +K,/iw) |

- 2(C, cd+C,e?) - 2(K; cd K, e?)/iw.

7
(25 )
(Zex')
(z:%)

(z » Z57)

(ze . ZgY)

(22, z57)61)



The type of impedance has been designated on the extreme right. Accordingly, rearranging rows
and columns, and subsequent partitioning of [Zaﬁ] yields the following submatrices:*

[2,, 0 0]
[ZEE] = 0 Zgg 0"
0 0 Z]
[z, 0 0]
[ZEI] - 0 Z,, L
0 0 VA

[ZIE] . Y Zys o
K oz,
7 o o]
[ZII] = 0 Zy, N
| o oz,
vql vll
{VE} = Vs {VI} = Va
6/ V3/
F, ) F, )
{Fe} = Fg ? ' {F:} = Fpov (62)
6 Fs)

10.1.4 Genevralized Forces -

The total virtual work done by the applied forces on the system is
Wy = f 8x, + f 8x — f edx, . (63)

*These submatrices are required by Equation 10 to determine [ZE]'
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The generalized force f_ (corresponding to x,) is defined by

W, = f_ ox, , (64)
from which f, = £, f, = f, f; = - f, e. Thus
Fx
{FI } = Fy ’ {FE} = {O} ’ (65)
-eF,

where F_, F, and - ¢ F_ are the Fourier transforms of f,, f, and f, respectively.

10.1.5 Determination of [Z;;]™*

In Equation 10, the inverse matrix of [Z,,] is required for the determination of [Z;].* Let us
denote the elements of [Z;,,]"! by h,;. Then h,, is related to Z,, by

Zip e byg T Oap s (66)

where §,, is the so-called "Kronecker delta.”

Since [z,,] is a diagonal matrix, Equation 66 reduces to

ZII,ao. ha.a. = 1
Thus
M_l 0 0—‘ -
le
1
h = 0 - 0 .
[ a,B] 222 - (67)
0 0 L
L Za3 ]

10.1.6 Determination of (Z; ]

From Equation 10, the general element of [ZE] is given by
3 3
Zgap = Zegop ~ Z Zet,ox D1t Z1E A8 (a0, 8=1,2,3) (68)
£=1 k=1

*The inversion for this particular example is easily obtained from Equation 66. In general, inversion of higher orders may require

machine computation.
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Since, for this example:

Zik,ap

Zg1,ak

B

Zig As
then

Zy up
and

Zg e T Zgp oo ~ ZEZI,aa

Thus

Zyy - Zl";/Z“
(Ze.e] ~ 0
0
10.1.7 Determination of {Fg,}

From Equation 11,

3 3
F b
A=1 k=1
but for this example, F>, = Zg; .. by o Fr s

{Fe.} =

Ea E E Zet,ak Dot Frod

0 (e 7 B) .
0 (a Z k),
0 (k 7 4y .
o Aip,
0 (a Z8) .
N (a=8=1,23) .
0 0
Zgg —2225/222 0
0 Zgs —2326/233

(¢ =1, 2,3),

from which

(214/211) F,
(225/222) F,

- (236/233) eF,

(69)

(70)

(71)
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1
X
2
C.G.
ML e e
. C.G.
M]r I] 0 xn
Xn !
K, ct K x5 3
¢ > I
C3 ” o
xé . )
i, & Kz Ly
—
I
C.G C
ML oe : .
by x
5
e ,Cg Ki Xs
c
fy ¢ Figure 6—Lumped parameter equivalent of a
T . simplified passive two-dimensional system.
>

10.1.8 Determination of {V}

From Equation 12,

\2 ~Zy (Zu 244_2124)_11:X
= = - - 2\-1 .
Figure 5—Lumped parameter equivalent of the composite {VE'“} Vs Zys (222 Zss = 255) Fy (72)
system composed of systems | and |l, with connection at 2y-1
center of gravity of M1 . Vs Zyg (255 Zgg - Zj5) 7 €F,

10.1.9 Effect of Subsystems

Next we shall consider the effect of connecting a second system to the exterior coordinates x
x,, and x, (Figure 5). The system is assumed to be passive (Figure 6).

49

Letting superscripts I and II denote quantities corresponding respectively to the first and
second system, the following is obtained:

11 _ I1y2 11
244 (214 )/le 0 0
I = II_ (7 1I\2/7II ,
[ZE,aﬁ] 0 Zss (225 )/222 0
0 0 ZGIGI B (ZSISI )2/2313I
where
zi = ieM™ rCf K iw,
I1X = B II II I1/:
zf = ieM® r M+ K iw
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p—_

II
233

1
Zis

II
ZSS

II
266

1X
Zl4

II
Z25

II
236

iwIMT + g2 (Clu +K1H/ia)) .

¢+ kM iw
cH o+ KMo,
£2 (Cf7 +K M iw)
(T +K1”/iw) .

— (CZII +K211/iw) ,

- gf (CMT +K [ i) .

(73)

From Equation 26, the interconnection matrix is

[Haﬁ] - 0 Z[Zsl?, -(2%)? Zzli:[ 0 ) (74)

The roots of A(H) = 0 are the critical frequencies of the composite system.

I Qup denotes the elements of [Haﬁ]‘l, then

1/H,, 0 0
[Qaﬁ] - 0 1/H,, 0 : (75)
0 0 /4,
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It follows from Equation 23 and 25 that the response of the composite system at the interconnection

of the two systems is:

<
"

II
= - (zd/zd) ) Tk - (2h) 2]
L=1

<3
1

5 (222/2212) Fy/Z[Zslé N (22’75)2/23]5] ’

<
1

6 (2315/2313) EFx/Z[ers - (ZsLe)z/Zsszl ’ (76)

10.2. Measurement Approach

The primary purpose here will be to demonstrate the experimental evaluation of the mobility
matrix [YE} of each of the systems, to obtain their corresponding interconnection matrix and to
describe the resulting response at the interconnection.

10.2.1 Determination of Mobility Parameters

Equation 35 for passive systems* is

7o (o)} = [Rle)] {F® (w0)} - (35)
where k = 3 since there are three exterior coordinates in each system.

10.2.2 System I

With the system suspended on a low-frequency suspension such that all exterior coordinates
(x4, x5, x¢) are unattached (zero load impedance or infinite mobility), apply a sinusoidal force of
constant frequency «, at x, and measure the phasor (referencing phase angle with respect to the
applied sinusoidal force) of the resulting velocity atx,, x, and x,. Denote these velocity phasors
and this single applied force phasor respectively by

D () = VD (@0)] D (@)
VD () = VD ()] D (@)
VD (a0) = [V ()] D (w0)
RO () = R (w)] B (w) = 0 -

*Although system I is truly active, the use of Equation 35 for passive systems supplemented by an independent determination of free

velocities is equally applicable.
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Repeating the above test two more times, each time applying the sinusoidal force of frequency o,
successively at x; and x,, provides the additional set of measurements similar to (77):

VD () = V@ (@) AP ()
VD (a) = [ ()] A (w0)
v () = VD (o] A (o)
R (w) = [F (w)] A (w) = 0, (15)
VD (w) = [V (@) A (o)
v (o) = VO] A (s0) |
V(o) = [V ()] A (o)
PO (w) = [FE ()] A (o) = 0 )

From (77), (78) and (79) the elements of the mobility matrix are simply computed as

B ‘V4(1) (“"o)’ L

Y4 (“’o) - _’F4(1> (wo)‘ 6>v<4) (“’o) ’
_ ‘Vs(l) (wo)‘ 1)

Ys, (wo) - |F4(1) ((:07‘ /gv(S (“’o) )

You (‘"0) = |VG( >(w0)‘ %v(l) (wo) ,

B0 (e0)] /7

Y5 (“’0) = IV4(2) (wO)' /ev(z) (wo) R

P& (wp)]

’Vs(z) (“’o)l

IF5<”2) (C"O)I
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Yos (w) 75 () W2 (@)
e i Ao
o J e
Voq (o) ;:EZE:;{ & () (80)

In Equation 80 the condition Y, = Y4 (a 7 8) provides a check on the linearity of the system.

The complete determination of the mobility matrix requires repeating the above procedures
for all frequencies of interest.

10.2.3 Systewm I

The determination of the mobility matrix for system II is accomplished in a manner similar
to that for system I. The exterior coordinates of this system are defined as x/%, x.'* and x!* as
shown in Figure 6.

10.2.4 Determination of Free Velocities

In this example, it is necessary only to determine the free velocities of system I since system
II is passive.” With the system suspended as before, the resulting free velocity phasor at all ex-
terior coordinates due to the excitations f and f, at frequency w, may be measured directly. A
convenient reference for phase angle measurements is the free velocity at one of the coordinates.
Assuming that the phase angle of these measurements is made relative to the free velocity at co-
ordinate x,, the free velocity phasors may be expressed as

Vo.a (“’o) = ‘Vo,4("’o)’ 00,4 (‘“o)r =0,

Vos (("o) = "Vo,s (“’o), {QVO,S (_“’o) ’
'Vo,e (wo)‘ {9v0,6 (“’o) . (81)

The complete determination of free velocity requires operating the system over all frequencies of
interest and performing the above procedure.

1

Vo6 (“)0)
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10.2.5 Interconnection Matrix

If we denote the [YE] for the active system and passive system respectively by superscripts 1
and II, the interconnection matrix may be obtained from Equation 26 as

[H(w)] = [YI (w)]—l + [YII (w)]—l , (82)
where the matrix inversion of [Y(w)] may require digital machine computations.
10.2.6 Prediction of Composite Response
The response at the interconnection of the two systems may be predicted by
(v} = - [HE@) P @) : (83)
where {Fbl} can be obtained from
{Fl@} = @l v, @} - (84)

11. DISCUSSION

The objective of this paper is to present a systematic approach for the analytic and experi-
mental determination of mechanical impedance and its associated effects on dynamic response of
complex mechanical systems. The nature of the formulation of the approach is sufficiently general
for extension to cases of many types of distributed systems subject to varied steady state, transient
and random excitations.

Although the concepts related to the use of mechanical impedance expressions have been ex-
plored extensively in the development of methods for shock and vibration control, they have been
limited to a large extent to systems which permit analysis of only one-dimensional types (Refer-
ence 2). Limited and specialized application to multi-dimensional systems has been studied only
recently. As shown in this study, the treatment of mechanical impedance of multi-degree of freedom/
multi-dimensional systems may be approached by adopting certain aspects of matrix methods of
structural analysis, together with appropriate interpretation of quantities related to the concepts
of mechanical impedance (e.g., blocked force, free velocity, point and transfer impedance).

The problem of describing complex mechanical systems so as to consider the information
available about the individual subsystems, involves the formulation of impedance matrices and
interconnection equations wherein the conditions of force equilibrium and velocity compatibility,
implicitly imposed, are equivalent to physical connection of the subsystems. The characteristic
values of the interconnection matrix correspond to critical frequencies of the composite systems as
observed at the interconnection. Moreover, the methods of interconnection developed are applicable
to many systems of complex combinations. Systems of mixed types such as electro-mechanical
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and acoustic-mechanical may be treated using these methods. With regard to environmental test-
ing, the methods of interconnection further provide a sound theoretical basis for performing sub-
assembly testing which would obviate the demand for increasingly large complex environmental
test facilities for future generation aerospace systems.

On the basis of the results of this study, the following recommendations are made:

1. Suitable experiments should be undertaken to determine the proper extent of the practical
application of the methods herein presented.

2. Effort should be directed toward developing a computer program for mathematical compu-
tation of the required matrix relationships.

3. Effort should be directed toward the development of sensors and/or data reduction methods
for the measurement of multi-dimensional impedance parameters.

4. Effort should be directed toward the investigation of experimental techniques for determin-
ing these parameters using random and transient types of force excitations.

5. The feasibility of applying the resulis of this study to environmental test simulation should
be investigated in further studies. Included should be a laboratory study of simulation and

control of impedance of multi-dimensional models.

Goddard Space Flight Center
National Aeronautics and Space Administration
Greenbelt, Maryland, September 21, 1966
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Appendix

Symbols

a, b, c, d, e, f, g linear dimensions for example problem
C damping coefficient
D dissipation energy
e distance above c.g. of mass M,
8 superscript for rectilinear quantities
85 superscript for rectilinear couplings
86, 05 superscripts for rectilinear—rotational couplings, or conversely
E subscript for exterior quantities
EE subscript for exterior couplings
EI, IE subscripts for exterior-interior couplings, or conversely
f_ generalized force corresponding to ath generalized coordinate
f  applied force in x-direction
f_ applied force in y-direction
1 subscript for interior quantities
11 subscript for interior couplings
I mass moment of inertia
K stiffness coefficient
M mass
N number of degrees-of-freedom
P potential energy

F, (») Fourier transform of f_ (t)
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V/3 (@)

34

Fourier transform of X5 (t)

number of exterior coordinates
subscript for rotational quantities
s'ub_sc.ript for rotational couplings
kinetic energy

time variable

superscripts for specific subsystems
circular frequency

displacement corresponding to Ath coordinate
velocity

acceleration

frequency dependent characteristic property of system
total virtual work done by applied force
virtual displacement

denotes column matrix

denotes transpose of { }

denotes square or rectangular matrix
denotes transpose of [ ]

denotes inverse matrix of square matrix
inertia matrix

damping matrix

stiffness matrix

transform force matrix

blocked force matrix (transform)
transform velocity matrix

transform free velocity matrix



[Zaﬁ] mechanical impedance matrix for system
[z,] impedance matrix looking back from exterior coordinates
[Y] inverse matrix of (Z]
[2z,] impedance matrix of restraint system
(H,5] interconnection matrix
A(H) determinant of [Haﬁ]

[Qaﬁ] inverse matrix of [Haﬁ]
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